

Carbon is Changing Our Planet: Consequences and Actions Jeff Reimer UC Berkeley & FPCB

1400 million tons of CO₂ emitted worldwide from coal plants in 2017* *USEIA

*

Copyright © 2012 by Christoph Hormann http://services.imagico.de/

1400 million tons of CO2 emitted worldwide from coal plants in 2017* *****USEIA

Copyright © 2012 by Christoph Hormann http://services.imagico.de/

worldwide plastics production in 2017: 344 million tons*

*Association of Plastics Manufacturers

-000

https://www.worldometers.info

https://blog.ricksteves.com/blog/palio-crowds/

Weight of 8.10 billion people: 5.11 x 10^11 kilograms, 0.51 gigatons

https://www.worldometers.info/

Weight of 8.10 billion people: 5.11 x 10^11 kilograms, 0.51 gigatons

10.00

https://www.worldometers.info/

In 2021 humans emitted 36.4 gigatons of carbon https://www.statista.com/statistics/276629/global-co2-emissions/

What is the source of all these recent CO₂ emissions?

Unless noted otherwise, all figures in this talk are adapted from IPCC_AR6_FullReport_2022

Where does all that CO₂ go?

Where does all that CO₂ go?

CO₂ in the future: our choices

(a) Atmospheric CO₂ concentrations

(a) Atmospheric CO₂ concentrations

(a) Atmospheric CO₂ concentrations

earthshine into space J_{Earth}

$$J[=]\frac{energy}{area-time} \text{ e.g.}, \frac{joules}{m^2-sec} = -\frac{1}{2}$$
$$= \sigma T^4$$
earthshine "black body radiation"
into space
JEarth

an example of "geoengineering"

Umbrella@earth is an example of changes in "radiative forcing"

Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J., and Shippert, T. R., Nature, 2015

radiative forcing from CO₂ has been measured

Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J., and Shippert, T. R., Nature, 2015

radiative forcing from CO₂ has been measured

Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J., and Shippert, T. R., Nature, 2015

The role of our atmosphere: absorb incoming sunshine... and absorb outgoing earthshine

Wavelength (µm)

The role of our atmosphere: absorb incoming sunshine... and absorb outgoing earthshine

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

change in temperature from anthropogenic forcing

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

Norway (NOR)

capita GCM range of cumulative impact hange in $+100 \pm$ GCM median per 0 C GDP % 1960 1970 1980 1990 2000

"Cool" countries benefit economically with warming

change in temperature from anthropogenic forcing

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

Norway (NOR)

capita GCM range of cumulative impact hange in $+100 \pm$ GCM median per C GDP % 1960 1970 1980 1990 2000

"Cool" countries benefit economically with warming

change in temperature from anthropogenic forcing

India (IND)

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

nature climate change

NATURE CLIMATE CHANGE | VOL 8 | AUGUST 2018 | 723-729 |

Higher temperatures increase suicide rates in the United States and Mexico USA, Chile, Canada

Marshall Burke^{1,2,3*}, Felipe González⁴, Patrick Baylis⁵, Sam Heft-Neal², Ceren Baysan⁶, Sanjay Basu⁷ and Solomon Hsiang^{3,8}

ARTICLES https://doi.org/10.1038/s41558-018-0222-x

nature climate change

NATURE CLIMATE CHANGE | VOL 8 | AUGUST 2018 | 723-729 |

Higher temperatures increase suicide rates in the United States and Mexico USA, Chile, Canada

Marshall Burke^{1,2,3*}, Felipe González⁴, Patrick Baylis⁵, Sam Heft-Neal², Ceren Baysan⁶, Sanjay Basu⁷ and Solomon Hsiang^{3,8}

ARTICLES https://doi.org/10.1038/s41558-018-0222-x

Examine >600 million geolocated Tweets for depressive language...

Average monthly temperature (°C)

Examine >600 million geolocated Tweets for depressive language...

ARTICLES

https://doi.org/10.1038/s41558-018-0222-x

ARTICLES

Higher temperatures increase suicide rates in the **United States and Mexico**

thousands 30 suicides (cumulative, 20 Mexico 10 Excess 0 2010 2050 2000 2020 2030 2040 Year

Which means 9,000-40,000 additional suicides

SCIENTIFIC **Reports**

Received: 16 December 2015 Accepted: 21 April 2016 Published: 09 June 2016

OPEN Potentially Extreme Population **Displacement and Concentration** in the Tropics Under Non-Extreme Warming 2 degrees C

Solomon M. Hsiang^{1,2} & Adam H. Sobel^{3,4,5}

SCIENTIFIC **Reports**

Received: 16 December 2015 Accepted: 21 April 2016 Published: 09 June 2016

OPEN Potentially Extreme Population **Displacement and Concentration** in the Tropics Under Non-Extreme Warming 2 degrees C

Solomon M. Hsiang^{1,2} & Adam H. Sobel^{3,4,5}

Migration distance to keep the same median temperature (IF we keep to 2C rise globally)

Reference: San Francisco to Fresno = 187 miles

GLOBAL SEA LEVEL

Years

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp^{1*} & Benjamin H. Strauss@¹

New projection for 2050

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp^{1*} & Benjamin H. Strauss@¹

New projection for 2050

Land underwater at high tide
Populated area

Old projection for 2050

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp¹[∗] & Benjamin H. Strauss[®]

New projection for 2050

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp^{1*} & Benjamin H. Strauss^{® 1}

New projection for 2050

Land underwater at high tide Populated area

Old projection for 2050

The New Hork Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp^{1*} & Benjamin H. Strauss^{® 1}

New projection for 2050

Land underwater at high tide Populated area

New projection for 2050

The New Hork Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp¹* & Benjamin H. Strauss⊚¹

New projection for 2050

Land underwater at high tide Populated area

New projection for 2050

Mumbai: 21 million Shanghai: 28.4 million Alexandria: 5.6 million

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp¹[∗] & Benjamin H. Strauss[®]

nature communications

Article

https://doi.org/10.1038/s41467-023-36033-x

Glacial lake outburst floods threaten millions globally

Received: 24 February 2022

Accepted: 11 January 2023

Caroline Taylor¹, Tom R. Robinson ^(*) ² ^[*], Stuart Dunning¹, J. Rachel Carr¹ [&] Matthew Westoby 10 3

Glacial lake outburst floods threaten millions globally

Received: 24 February 2022 Accepted: 11 January 2023

Article

Caroline Taylor¹, Tom R. Robinson $O^2 \square$, Stuart Dunning¹, J. Rachel Carr¹ & Matthew Westoby O^3

Article Glacial lake outburst floods threaten millions globally

Received: 24 February 2022

Caroline Taylor¹, Tom R. Robinson 1 \square , Stuart Dunning¹, J. Rachel Carr¹ & Matthew Westoby 1

Temperature-related mortality in China from specific injury

Received: 4 January 2022	Jianxiong Hu ^{1,12} , Guanhao He ^{2,12} , Ruilin Meng ^{3,12} , Weiwei Gong ⁴ ,
Accepted: 5 December 2022	Zhoupeng Ren ^{® 5} , Heng Shi ⁶ , Ziqiang Lin ² , Tao Liu ² , Fangfang Zeng ^{® 2} , Peng Yin ⁷ , Guoxia Bai ⁶ , Mingfang Qin ⁸ , Zhulin Hou ⁹ , Xiaomei Dong ² , Chunliang Zhou ¹⁰ ,
Published online: 03 January 2023	Zhuoma Pingcuo ⁶ , Yize Xiao ⁸ , Min Yu ⁴ , Biao Huang ⁹ , Xiaojun Xu ³ , Lifeng Lin ³ ,
Check for updates	Jianpeng Xiao', Jieming Zhong", Donghui Jin' ^o , Qinglong Zhao ^s , Yajie Li ^o , Cangjue Gama ⁶ , Yiqing Xu ¹⁰ , Lingshuang Lv ¹⁰ , Weilin Zeng ¹ , Xing Li ¹ , Liying Luo ¹ ,
	Maigeng Zhou ⁷ , Cunrui Huang ¹¹ & Wenjun Ma [©] ²

Temperature-related mortality in China from specific injury

Received: 4 January 2022	Jianxiong Hu ^{1,12} , Guanhao He ^{2,12} , Ruilin Meng ^{3,12} , Weiwei Gong ⁴ ,	
Accepted: 5 December 2022	Zhoupeng Ren ^{® 5} , Heng Shi ⁶ , Ziqiang Lin ² , Tao Liu ² , Fangfang Zeng ^{® 2} , Peng Yin Guoxia Bai ⁶ , Mingfang Qin ⁸ , Zhulin Hou ⁹ , Xiaomei Dong ² , Chunliang Zhou ¹⁰ .	
Published online: 03 January 2023	Zhuoma Pingcuo ⁶ , Yize Xiao ⁸ , Min Yu ⁴ , Biao Huang ⁹ , Xiaojun Xu ³ , Lifeng Lin ³ ,	
Check for updates	Jianpeng Xiao', Jieming Zhong", Donghui Jin' ⁰ , Qinglong Zhao ⁹ , Yajie Li ⁰ , Cangjue Gama ⁶ , Yiqing Xu ¹⁰ , Lingshuang Lv ¹⁰ , Weilin Zeng ¹ , Xing Li ¹ , Liying Luo ¹ ,	
	Maigeng Zhou ⁷ , Cunrui Huang ¹¹ & Wenjun Ma ¹⁰	

nature communications

https://doi.org/10.1038/s41467-022-35462-4

Temperature-related mortality in China from specific injury

Temperature-related mortality in China from specific injury

Received: 4 January 2022	Jianxiong Hu ^{1,12} , Guanhao He ^{2,12} , Ruilin Meng ^{3,12} , Weiwei Gong ⁴ ,	
Accepted: 5 December 2022	Zhoupeng Ren ^{® 5} , Heng Shi ⁶ , Ziqiang Lin ² , Tao Liu ² , Fangfang Zeng ^{® 2} , Peng Y Guoxia Bai ⁶ , Mingfang Qin ⁸ , Zhulin Hou ⁹ , Xiaomei Dong ² , Chunliang Zhou ¹⁰ .	
Published online: 03 January 2023	Zhuoma Pingcuo ⁶ , Yize Xiao ⁸ , Min Yu ⁴ , Biao Huang ⁹ , Xiaojun Xu ³ , Lifeng Lin ³ ,	
Check for updates	Jianpeng Xiao', Jieming Zhong ⁴ , Donghui Jin ¹⁰ , Qinglong Zhao ⁹ , Yajie Li ⁹ , Cangjue Gama ⁶ , Yiqing Xu ¹⁰ , Lingshuang Lv ¹⁰ , Weilin Zeng ¹ , Xing Li ¹ , Liying Luo ¹ ,	
	Maigeng Zhou ⁷ , Cunrui Huang ¹¹ & Wenjun Ma ¹⁰	

Additional deaths due to climate change....

• • • •

Temperature-related mortality in China from specific injury

Additional deaths due to climate change....

Article

https://doi.org/10.1038/s41467-022-35462-4

Temperature-related mortality in China from specific injury

Total Injury	Total Injury	Unintentional Injury	Unintentional Injury	Intentional injury	Intentional injury
2060s	2090s	2060s	2090s	2060s	2090s

Additional deaths due to climate change....

• The atmosphere is changing

- The atmosphere is changing
- The change is due to our combustion

- The atmosphere is changing
- The change is due to our combustion

Summary • Radiative forcing connects the change to temperature

- The atmosphere is changing
- The change is due to our combustion

• Radiative forcing connects the change to temperature • Earth has managed carbon on geological timescales

- The atmosphere is changing
- The change is due to our combustion Economic models connect the atmosphere to our future changing climate and its consequences

• Radiative forcing connects the change to temperature • Earth has managed carbon on geological timescales

- The atmosphere is changing
- The change is due to our combustion Economic models connect the atmosphere to our future changing climate and its consequences

• Radiative forcing connects the change to temperature • Earth has managed carbon on geological timescales

There are urgent consequences

- The atmosphere is changing
- The change is due to our combustion Economic models connect the atmosphere to our future changing climate and its consequences
 - Average temperatures: rising \bullet
 - Inequality: rising
 - Sea level: rising, flooding
 - Glaciers: retracting, flooding
 - Behavior: changing: violence, migration
 - Ice on the arctics: declining \bullet
 - Extreme weather: increasing
 - Biological consequences would take another seminar!

• Radiative forcing connects the change to temperature • Earth has managed carbon on geological timescales

There are urgent consequences

"What keeps you up at night?"

calculus

Climate state

bifurcation tipping events

e.g., collapse of the thermohaline circulation in the Atlantic Ocean ...a critical level in the forcing is reached.

BOREAL FOREST NORTHERN EXPANSION

BOREAL PERMAFROST **ABRUPT THAW**

ARCTIC WINTER SEA ICE

COLLAPSE

LABRADOR SEA/ SUBPOLAR GYRE COLLAPSE

ATLANTIC MERIDIONAL **OVERTURNING CIRCULATION** COLLAPSE

ICE SHEET

COLLAPSE

AMAZON RAINFOREST DIEBACK

MOUNTAIN GLACIERS LOSS

WEST ANTARCTIC ICE SHEET COLLAPSE

CLIMATE CHANGE

Exceeding 1.5°C global warming could trigger multiple climate tipping points

David I. Armstrong McKay^{1,2,3,4}*, Arie Staal^{1,2,5}, Jesse F. Abrams³, Ricarda Winkelmann⁶, Boris Sakschewski⁶, Sina Loriani⁶, Ingo Fetzer^{1,2}, Sarah E. Cornell^{1,2}, Johan Rockström^{1,6}, Timothy M. Lenton³*

BOREAL PERMAFROST COLLAPSE

BOREAL FOREST SOUTHERN DIEBACK

LOW-LATITUDE CORAL REEFS DIE-OFF

EAST ANTARCTIC ICE SHEET COLLAPSE

EAST ANTARCTIC SUBGLACIAL BASINS COLLAPSE

In the Atlantic Ocean, Subtle Shifts Hint at Dramatic Dangers

The warming atmosphere is causing an arm of the powerful Gulf Stream to weaken, some scientists fear.

≡ <u>Q</u>

5

By MOISES VELASQUEZ-MANOFF and JEREMY WHITE

The Gulf Stream has shaped climate and
In the Atlantic Ocean, Subtle Shifts Hint at Dramatic Dangers

The warming atmosphere is causing an arm of the powerful Gulf Stream to weaken, some scientists fear.

≡ <u>Q</u>

5

By MOISES VELASQUEZ-MANOFF and JEREMY WHITE

The Gulf Stream has shaped climate and

Atlantic Meridional Overturning Circulation

https://science.howstuffworks.com/ environmental/earth/oceanography/amocnews.htm

ARTICLE nature

Observed fingerprint of a weakening Atlantic Ocean overturning circulation

L. Caesar^{1,2}*, S. Rahmstorf^{1,2}*, A. Robinson^{1,3,4,5}, G. Feulner¹ & V Saba⁶

CM2.6 model

https://doi.org/10.1038/s41586-018-0006-5

12 APRIL 2018 | VOL 556 | NATURE | 191

ARTICLE nature

Observed fingerprint of a weakening Atlantic Ocean overturning circulation

L. Caesar^{1,2}*, S. Rahmstorf^{1,2}*, A. Robinson^{1,3,4,5}, G. Feulner¹ & V Saba⁶

CM2.6 model

https://doi.org/10.1038/s41586-018-0006-5

12 APRIL 2018 | VOL 556 | NATURE | 191

ARTICLE nature

Observed fingerprint of a weakening Atlantic Ocean overturning circulation

L. Caesar^{1,2}*, S. Rahmstorf^{1,2}*, A. Robinson^{1,3,4,5}, G. Feulner¹ & V. Saba⁶

CM2.6 model

https://doi.org/10.1038/s41586-018-0006-5

12 APRIL 2018 | VOL 556 | NATURE | 191

HadISST data

Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning

Circulation NATURE CLIMATE CHANGE | VOL 11 | AUGUST 2021 | 680-688 |

Niklas Boers 💿 1,2,3 🖂

BRIEF COMMUNICATION https://doi.org/10.1038/s41561-021-00699-z

Current Atlantic Meridional Overturning Circulation weakest in last millennium

L. Caesar^{1,2}^M, G. D. McCarthy¹, D. J. R. Thornalley¹, N. Cahill⁴ and S. Rahmstorf¹ NATURE GEOSCIENCE | VOL 14 | MARCH 2021 | 118-120 | www.nature.com/naturegeoscience

data..NOT model... proxies for turnover of water in the AMOC

Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning

Circulation NATURE CLIMATE CHANGE | VOL 11 | AUGUST 2021 | 680-688 |

Niklas Boers 💿 1,2,3 🖂

BRIEF COMMUNICATION https://doi.org/10.1038/s41561-021-00699-z

Current Atlantic Meridional Overturning Circulation weakest in last millennium

L. Caesar^{1,2}^M, G. D. McCarthy^{1,1}, D. J. R. Thornalley^{1,3}, N. Cahill⁴ and S. Rahmstorf^{1,2,5} NATURE GEOSCIENCE | VOL 14 | MARCH 2021 | 118-120 | www.nature.com/naturegeoscience

data..NOT model... proxies for turnover of water in the AMOC

The evolution of the North Atlantic Meridional Overturning Circulation since 1980

Laura C. Jackson 🎯 🖾, Arne Biastoch 🎯 🖓, Martha W. Buckley 🎯 4, Damien G. Desbruyères^s, Eleanor Frajka-Williams^e, Ben Moat[®] and Jon Robson[®]

AMOC anomaly (Sv)

NATURE REVIEWS | EARTH & ENVIRONMENT

VOLUME 3 | APRIL 2022 | 241

"What keeps you up at night?"

Answer: and justice

extraction

extraction burn

extraction urn rofit

extraction profit - environmental justice

0.5

extraction burn profit - environmental justice consequences

00000

extraction burn profit - environmental justice consequences

-0.5

0

0.5

consequences are not shared equally...

COLUMN TRANS

extraction burn profit - environmental justice consequences

-0.5

0.5

consequences are not shared equally...

COLUMN TRANS

extraction burn profit - environmental justice consequences - climate justice

-0.5

What ate we soing to do?

Policy and Action Framework: The United Nations Sustainable Development Goals

17 PARTNERSHIPS FOR THE GOALS

Goal 7

5 **Targets Publications**

Ensure access to affordable, reliable, sustainable and modern energy for all.

> 22 **Events** 862 **Actions**

More info

Policy and Action Framework: The United Nations Sustainable Development Goals

Policy and Action Framework: The United Nations Sustainable Development Goals

17 PARTNERSHIPS FOR THE GOALS

Goal 13

Take urgent action to combat climate change and its impacts.

5 Targets 33 **Publications**

19 **Events** 1568 Actions

More info

Present day technologies that provide hope

Mitigation options

Energy

AFOLU

Buildings

Wind energy Solar energy Bioelectricity Hydropower Geothermal energy Nuclear energy Carbon capture and storage (CCS) Bioelectricity with CCS Reduce CH₄ emission from coal mining Reduce CH₄ emission from oil and gas

Carbon sequestration in agriculture Reduce CH₄ and N₂O emission in agriculture Reduced conversion of forests and other ecosystems Ecosystem restoration, afforestation, reforestation Improved sustainable forest management Reduce food loss and food waste Shift to balanced, sustainable healthy diets

Avoid demand for energy services Efficient lighting, appliances and equipment New buildings with high energy performance Onsite renewable production and use Improvement of existing building stock Enhanced use of wood products

Uncertainty range applies to to emission reduction. The associated with uncertainty

Present day technologies that provide hope

Costs are lower than the reference

the total potential contribution individual cost ranges are also

Mitigation options

Energy

AFOLU

Buildings

Wind energy Solar energy Bioelectricity Hydropower Geothermal energy Nuclear energy Carbon capture and storage (CCS) **Bioelectricity with CCS** Reduce CH₄ emission from coal mining Reduce CH₄ emission from oil and gas

Carbon sequestration in agriculture Reduce CH₄ and N₂O emission in agriculture Reduced conversion of forests and other ecosystems Ecosystem restoration, afforestation, reforestation Improved sustainable forest management Reduce food loss and food waste Shift to balanced, sustainable healthy diets

Avoid demand for energy services Efficient lighting, appliances and equipment New buildings with high energy performance Onsite renewable production and use Improvement of existing building stock Enhanced use of wood products

to emission reduction. The associated with uncertainty

Present day technologies that provide hope

Mitigation options

nsport

Industry

Fuel efficient light duty vehicles Electric light duty vehicles Shift to public transportation Shift to bikes and e-bikes Fuel efficient heavy duty vehicles Electric heavy duty vehicles, incl. buses Shipping - efficiency and optimization Aviation - energy efficiency Biofuels Energy efficiency Material efficiency Enhanced recycling Fuel switching (electr, nat. gas, bio-energy, H₂)

Feedstock decarbonisation, process change Carbon capture with utilisation (CCU) and CCS Cementitious material substitution Reduction of non-CO2 emissions

Reduce emission of fluorinated gas Other Reduce CH₄ emissions from solid waste Reduce CH₄ emissions from wastewater

Costs are lower than the reference

Uncertainty range applies to the total potential contribution individual cost ranges are also

		G	Transformative Science for the New Carbon Economy May 28 - June 2, 2023	
			Conference Program	
		Sunday		
		7:40 pm - 9:30 pm	Fast-Tracking CCUS from Lab to Innovation Discussion Leader: Andrea Ramirez Ramirez (Delft University of Technology, The Netherlands)	
Wednesday		Monday		
9:00 am - 12:30 pm	Learning from Deployment Discussion Leader: Frauke Kracke (Frontier, United States)	9:00 am - 12:30 p	m Converting CO₂ into Products Discussion Leader: Christoph Guertler (COVESTRO, Germany)	
6:00 pm - 8:00 pm	Greenhouse Gas Removal Harnessing Ocean, Land and Forests Discussion Leader: Yiwen Pan (Institute of Marine Chemistry and Environment, Ocean College, Zheijang University, China, China)	6:00 pm - 8:00 pn	m Moving from Technical Feasibility to Societal Impact Discussion Leader: Holly Buck (University at Buffalo, SUNY, United States)	
	conege, Zhejiang oniversity, enina, enina,	Tuesday		
Thursday		9:00 am - 12:30 p	Innovation in CO ₂ Capture	
9:00 am - 12:30 pm	Permanently Storing CO₂ in Minerals and Underground Discussion Leader: Greeshma Gadikota (Cornell University, United States)	6:00 pm - 8:00 pm	Discussion Leader: Kristin Jordal (SINTEF, Norway)	
6:00 pm - 8:00 pm	Unlocking Value Chains for Negative Emissions Discussion Leader: Sandra Osk Snaebiornsdottir (Carbfix Iceland)	0.00 pm - 0.00 pm	iscussion Leader: Heleen de Coninck (Eindhoven University of Technology, The letherlands)	

9:00 am - 12:30 pm	Permanently Storing CO₂ in Minerals and Underground Discussion Leader: Greeshma Gadikota (Cornell University, United States)
6:00 pm - 8:00 pm	Unlocking Value Chains for Negative Emissions Discussion Leader: Sandra Osk Snaebjornsdottir (Carbfix, Iceland)

WILE E. COYOTE is a trademark of Warner Bros. Entertainment Inc..

WILE E. COYOTE is a trademark of Warner Bros. Entertainment Inc..